OEWG 41 Bangkok, Thailand

Refrigerant conversion activities including energy efficiency in Japan

The Japan Refrigeration and Air Conditioning Industry Association Tetsuji Okada July. 3. 2019

© 2019 JRAIA The Japan Refrigeration and Air Conditioning Industry Association. All Rights Reserved.

Contents:

- 1. Market trend
- 2. Issues in Refrigerant Conversion
- 3. Regulations and Legislations in Japan
- 4. HFC Reduction in Japan
- 5. Risk Assessment of A3 Refrigerant
- 6. Next Generation Refrigerants
- 7. Energy Efficiency Improvement
- 8. JRAIA's Efforts to Accelerate of Lower GWP Refrigerant

1) Market Volume in each product sector in Japan

Product Category	Number of Units in <u>2018FY</u> (x 1,000)	Y/Y Ratio (%)
Residential A/Cs	9,814.6	108.4
Commercial A/Cs	879.7	106.4
Residential H/P water heaters	480.6	107.6
Gas engine-driven A/Cs	28.7	100.0
Water chilling units	14.5	105.1
Air to air heat exchangers	111.2	100.0
Commercial ref. cabinets	283.6	93.9
Condensing units	87.2	93.3
Refrigeration units	28.7	99.5

1) Market Volume in each product sector in Japan

Product Category	Number of Units in 2018FY (x 1.000)	Y/Y Ratio (%)	
			Record high!!
Residential A/Cs	9,814.6	108.4	
Commercial A/Cs	879.7	106.4	Record high!!
Residential H/P water heaters	480.6	107.6	
Gas engine-driven A/Cs	28.7	100.0	
Water chilling units	14.5	105.1	
Air to air heat exchangers	111.2	100.0	
Commercial ref. cabinets	283.6	93.9	
Condensing units	87.2	93.3	
Refrigeration units	28.7	99.5	

2) World market trend of Residential & Commercial A/Cs

3) Refrigerant transition status

Product Category	Number of Units in <u>2018FY</u> (x 1,000)	Y/Y Ratio (%)	Refrigerant
Residential A/Cs	9,814.6	108.4	$\begin{array}{c} \text{R410A} \Rightarrow \text{R32} \\ \text{(almost 100\%)} \end{array}$
Commercial A/Cs	879.7	106.4	$R410A \Rightarrow R32$ (only Small-size; 41%)
Residential H/P water heaters	480.6	107.6	CO ₂ , (R32) (almost 100%)
Gas engine-driven A/Cs	28.7	100.0	R410A
Water chilling units	14.5	105.1	R410A, R134A
Air to air heat exchangers	111.2	100.0	NA
Commercial ref. cabinets	283.6	93.9	R404A ⇒ R410A, CO_2
Condensing units	87.2	93.3	R404A⇒R410A, <mark>CO</mark> 2
Refrigeration units	28.7	99.5	R404A ⇒ NH ₃ , (+CO ₂) R410A

3) Refrigerant transition status

Product Cat	egory	Numb in <u>201</u>	er of Units <u>8FY</u> (x 1,000)	Y/Y Rat (%)	io	Refrigerant
Residential A/Cs		9	^{,81} VRF:			$\begin{array}{c} \text{R410A} \Rightarrow \text{R32} \\ \text{(almost 100\%)} \end{array}$
Commercial A/Cs	Turbo Chiller:		No Alternative yet		$R410A \Rightarrow R32$ (only Small-size; 41%)	
Residential H/P water	R245fa⇒R1R134a	R245fa⇒R1233zd R134a 0.6 10	107.6		CO ₂ , (R32) (almost 100%)	
Gas engine-driven A/	⇒R1234ze(8	E)	8.7	-00.0		R410A
Water chilling units			Air cooling Ty ≻ R32	pe:		R410A, R134A
Air to air heat exchan	gers		111.2 ▶ R404A⇒R410A ⇒ R448A, 449A > CO2(Cascade)		111.2 100.0	NA
Commercial ref. cabin	ets					R404A ⇒ R410A, CO_2
Condensing units						R404A⇒R410A, CO ₂
Refrigeration units			28.7	99.5		R404A ⇒ NH ₃ , (+CO ₂) R410A

2. Issues in Refrigerant Conversion

1) Overview of Legislation in Japan

Legislation on refrigerants

"Ozone Layer Protection Act" (1988) revised in 2018

- Regulation on production and consumption of CFC and HCFC (abbr. OLP Act)
- Maximum allowance of refrigerant consumption similar to Kigali amendment

"Act on Rational Use and Proper Management of Fluorocarbons" (revised in 2015, 2019)

- Regulation on emission of HFC/HCFC/CFC refrigerants (abbr. Fgas Act)

- Target GWP and year for each product group

"High Pressure Gas Safety Act" (revised in 2016)

- Regulation on safety of flammable (toxic) gas
- Method of safe use of products and refrigerants
- A2L refrigerants are included as "particular inert gas"

"Global Warming Countermeasure Plan" (Cabinet Decision in 2016)

- Regulation on emission of energy origin CO2

"Act on the Rational Use of Energy(Saving Energy Act)" (revised every 3-5 yr)

- Top Runner Program in 32 product categories

Legislation on Energy Efficiency

2) Timeline

3) Regulation of refrigerant by "designated products"

Designated Products	Target GWP (Weighted Average GWP)	Target year
Room A/C (Mini-Split)	750	2018
Commercial A/C (Split)	750	2020
Mobile A/C	150	2023
Condensing unit and refrigerating unit	1500	2025
Cold storage warehouses	100	2019
Urethane foam RACHP s	100 sectors	2020
Dust blowers	10	2019

Regulated by "Act on Rational Use and Proper Management of Fluorocarbons"

3) Regulation of refrigerant by "designated products"

4. HFC Reduction in Japan

5. Risk Assessment of A3 Refrigerant

1) Direction and Schedule

Direction In the trend of deregulation of A3 refrigerants, JRAIA will propose air-conditioner be secured. Based on RAC's risk assessment method and results for A2L refrigerant , JRAIA also conducts risk assessment for A3 refrigerant and recommended measures to ensure safetv from the evaluated result. Schedule

- First year ; A3 refrigerant risk assessment
- Second year ; Estimation method and make plan for risk reduction
- Last year ; Making practical measures and verifying by risk assessment

5. Risk Assessment of A3 refrigerant

2) RA step for A3 refrigerant

6. Next-Generation Refrigerants

Development of Assessment Techniques for Next-Generation Refrigerant with Low GWP Values(NEDO's Support)

7. Energy Efficiency Improvement

1) Top Runner Program and Results

7. Energy Efficiency Improvement

2) Trend of Energy Efficiency and Price

- 8. JRAIA's efforts to accelerate introduction of lower GWP refrigerants 1) Collaboration to UNEP/UNIDO: PRAHA-II Project
- 2016 : The HFC-32 study tour: provided participants with a background on designing and working with A2L refrigerants. Included plants visits, the risk assessment workshop, as well as attending the JRAIA International Symposium on "New Refrigerants and Environmental Technology".- Tokyo, Shizuoka, Shiga, Kobe
- 2017: International Roundtable Meeting on Risk Assessment Model for use of Io-GWP Refrigerants in High Ambient Temperature Countries – Kuwait
- 2018: Special Expert Meeting: Risk Assessment Model for the Use of Lower-GWP Refrigerants in High Ambient Temperature Countries – Cairo
- 2019: Workshop to support Praha-II members for the development of risk assessment model for air-conditioning applications of A2L refrigerants at high ambient temperature countries - Tokyo

© 2019 JRAIA The Japan Refrigeration and Air Conditioning Industry Association. All Rights Reserved.

8. JRAIA's efforts to accelerate introduction of lower GWP refrigerants2) ASEAN

2018: Workshop on risk assessment and safety measures for RACHP using flammable refrigerants (Workshop supported by NEDO) toward conversion to lower GWPs in ASEAN countries (Indonesia, Malaysia, Philippines, Thailand, Vietnam and Japan). Ozone officers and members of Industry Association discussed regulations, policies, and urgent challenges for refrigerant conversion and alternative refrigerants in each country. - Kobe, Japan

2019: Workshop on HFC phasedown for RACHP to meet Kigali Amendment in each countries) (Indonesia, Malaysia, Philippines, Thailand, Vietnam and Japan) TBD - Bangkok, Thailand

1. The global environment countermeasures (policy, product policy, etc.) in the refrigeration and air conditioning sector in Japan were clarified.

2. In considering future refrigerant conversion, it is necessary to consider the balance of various factors. In particular, verification of the safety of flammable refrigerants is very important.

3. Optimization is required for many parameters, including energy efficiency. (In terms of policy and products)

4. Regarding HFC reduction, not only individual product discussions but also efforts across the refrigeration and air conditioning sectors are required

HVAC&R 2020

Date: 3-6 March, 2020 Place: Makuhari Messe, Chiba, Japan

For further detail: https://www.jraia.or.jp/hvacr/en/index.html

Thank you for your kind attention!!

