Refrigerant conversion activities including energy efficiency in Japan

The Japan Refrigeration and Air Conditioning Industry Association
Tetsuji Okada
July. 3. 2019
Contents:

1. Market trend
2. Issues in Refrigerant Conversion
3. Regulations and Legislations in Japan
4. HFC Reduction in Japan
5. Risk Assessment of A3 Refrigerant
6. Next Generation Refrigerants
7. Energy Efficiency Improvement
8. JRAIA’s Efforts to Accelerate of Lower GWP Refrigerant
1. Market Trend

1) Market Volume in each product sector in Japan

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Number of Units in 2018FY (x 1,000)</th>
<th>Y/Y Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential A/Cs</td>
<td>9,814.6</td>
<td>108.4</td>
</tr>
<tr>
<td>Commercial A/Cs</td>
<td>879.7</td>
<td>106.4</td>
</tr>
<tr>
<td>Residential H/P water heaters</td>
<td>480.6</td>
<td>107.6</td>
</tr>
<tr>
<td>Gas engine-driven A/Cs</td>
<td>28.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Water chilling units</td>
<td>14.5</td>
<td>105.1</td>
</tr>
<tr>
<td>Air to air heat exchangers</td>
<td>111.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Commercial ref. cabinets</td>
<td>283.6</td>
<td>93.9</td>
</tr>
<tr>
<td>Condensing units</td>
<td>87.2</td>
<td>93.3</td>
</tr>
<tr>
<td>Refrigeration units</td>
<td>28.7</td>
<td>99.5</td>
</tr>
</tbody>
</table>
1. Market Trend

1) Market Volume in each product sector in Japan

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Number of Units in 2018FY (x 1,000)</th>
<th>Y/Y Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential A/Cs</td>
<td>9,814.6</td>
<td>108.4</td>
</tr>
<tr>
<td>Commercial A/Cs</td>
<td>879.7</td>
<td>106.4</td>
</tr>
<tr>
<td>Residential H/P water heaters</td>
<td>480.6</td>
<td>107.6</td>
</tr>
<tr>
<td>Gas engine-driven A/Cs</td>
<td>28.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Water chilling units</td>
<td>14.5</td>
<td>105.1</td>
</tr>
<tr>
<td>Air to air heat exchangers</td>
<td>111.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Commercial ref. cabinets</td>
<td>283.6</td>
<td>93.9</td>
</tr>
<tr>
<td>Condensing units</td>
<td>87.2</td>
<td>93.3</td>
</tr>
<tr>
<td>Refrigeration units</td>
<td>28.7</td>
<td>99.5</td>
</tr>
</tbody>
</table>

Record high!! Record high!!
1. Market Trend

2) World market trend of Residential & Commercial A/Cs

Global sales in 2018: 111.24 M-units

- xx%: Share of Residential A/Cs with A2L
- yy%: Share of Commercial A/Cs with A2L
1. Market Trend

3) Refrigerant transition status

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Number of Units in 2018FY (x 1,000)</th>
<th>Y/Y Ratio (%)</th>
<th>Refrigerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential A/Cs</td>
<td>9,814.6</td>
<td>108.4</td>
<td>R410A ⇒ R32 (almost 100%)</td>
</tr>
<tr>
<td>Commercial A/Cs</td>
<td>879.7</td>
<td>106.4</td>
<td>R410A ⇒ R32 (only Small-size; 41%)</td>
</tr>
<tr>
<td>Residential H/P water heaters</td>
<td>480.6</td>
<td>107.6</td>
<td>CO₂, (R32) (almost 100%)</td>
</tr>
<tr>
<td>Gas engine-driven A/Cs</td>
<td>28.7</td>
<td>100.0</td>
<td>R410A</td>
</tr>
<tr>
<td>Water chilling units</td>
<td>14.5</td>
<td>105.1</td>
<td>R410A, R134A</td>
</tr>
<tr>
<td>Air to air heat exchangers</td>
<td>111.2</td>
<td>100.0</td>
<td>NA</td>
</tr>
<tr>
<td>Commercial ref. cabinets</td>
<td>283.6</td>
<td>93.9</td>
<td>R404A ⇒ R410A, CO₂</td>
</tr>
<tr>
<td>Condensing units</td>
<td>87.2</td>
<td>93.3</td>
<td>R404A⇒R410A, CO₂</td>
</tr>
<tr>
<td>Refrigeration units</td>
<td>28.7</td>
<td>99.5</td>
<td>R404A ⇒ NH₃, (+CO₂) R410A</td>
</tr>
</tbody>
</table>
1. Market Trend

3) Refrigerant transition status

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Number of Units in 2018FY (x 1,000)</th>
<th>Y/Y Ratio (%)</th>
<th>Refrigerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential A/Cs</td>
<td>9,814.6</td>
<td>108.4</td>
<td>R410A ⇒ R32 (almost 100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R410A ⇒ R32 (only Small-size; 41%)</td>
</tr>
<tr>
<td>Commercial A/Cs</td>
<td>879.7</td>
<td>106.4</td>
<td>R32</td>
</tr>
<tr>
<td>Residential H/P water heaters</td>
<td>480.6</td>
<td>107.6</td>
<td>CO2, (R32) (almost 100%)</td>
</tr>
<tr>
<td>Gas engine-driven A/Cs</td>
<td>28.7</td>
<td>100.0</td>
<td>R410A</td>
</tr>
<tr>
<td>Water chilling units</td>
<td></td>
<td></td>
<td>R410A, R134A</td>
</tr>
<tr>
<td>Air to air heat exchangers</td>
<td>111.2</td>
<td>100.0</td>
<td>NA</td>
</tr>
<tr>
<td>Commercial ref. cabinets</td>
<td></td>
<td>3.9</td>
<td>R404A ⇒ R410A, CO2, R448A, 449A</td>
</tr>
<tr>
<td>Condensing units</td>
<td></td>
<td>3.3</td>
<td>R404A ⇒ R410A, CO2</td>
</tr>
<tr>
<td>Refrigeration units</td>
<td>28.7</td>
<td>99.5</td>
<td>R404A ⇒ NH3, (+CO2) R410A</td>
</tr>
</tbody>
</table>

VRF: No Alternative yet

Turbo Chiller:
- R245fa ⇒ R1233zd
- R134a ⇒ R1234ze(E)

Air cooling Type:
- R32

CO2 (Cascade):
- R404A ⇒ R410A, CO2
2. Issues in Refrigerant Conversion

Key Concept for Refrigerants Conversion

- **S: Safety**
 - Low Toxicity
 - Low Flammability

- **E: Environment Performance**
 - Zero Ozone Depletion Potential (ODP)
 - Low Global Warming Potential (GWP)

- **E: Energy Efficiency**
 - High Seasonal Efficiency
 - Similar performance at high load cooling

- **E: Economic Feasibility**
 - Low Capital Cost
 - Low Operating Cost
3. Regulations and Legislations in Japan

1) Overview of Legislation in Japan

Legislation on refrigerants

- **“Ozone Layer Protection Act”** (1988) revised in **2018**
 - Regulation on production and consumption of CFC and HCFC (abbr. OLP Act)
 - Maximum allowance of refrigerant consumption similar to Kigali amendment

- **“Act on Rational Use and Proper Management of Fluorocarbons”** (revised in 2015, 2019)
 - Regulation on emission of HFC/HCFC/CFC refrigerants (abbr. Fgas Act)
 - Target GWP and year for each product group

- **“High Pressure Gas Safety Act”** (revised in 2016)
 - Regulation on safety of flammable (toxic) gas
 - Method of safe use of products and refrigerants
 - A2L refrigerants are included as “particular inert gas”

Legislation on Energy Efficiency

- **“Global Warming Countermeasure Plan”** (Cabinet Decision in 2016)
 - Regulation on emission of energy origin CO2

- **“Act on the Rational Use of Energy(Saving Energy Act)”** (revised every 3-5 yr)
 - Top Runner Program in 32 product categories
3. Regulations and Legislations in Japan

2) Timeline

Global

- Vienna Convention
- Montreal Protocol
- UNFCCC
- Kyoto Protocol (COP3)
- Dubai Pathway
- Kigali Amendment
- Paris Agreement (COP21)

Japan

- Ozone Layer Protection Law
- HCEC produce regulation starts
- HFC introduction
- Home Appliance Recycle Act
- Freon Recovery & Destruction Act
- EoL Automotive Recycle Act

Global Warming Countermeasure Plan

- Saving Energy Act (1979)
- Revised Saving Energy Act
- 1st Top Runner Target
- 2nd Top Runner Target
- Next Step on going

Revised Fgas Act I (2018)

Revised Fgas Act II (2019)

Revised “OLP” Act (2018)

Revised Fgas Act

Amendment

© 2019 JRAIA The Japan Refrigeration and Air Conditioning Industry Association. All Rights Reserved.
3. Regulations and Legislations in Japan

3) Regulation of refrigerant by "designated products"

Regulated by “Act on Rational Use and Proper Management of Fluorocarbons”

<table>
<thead>
<tr>
<th>Designated Products</th>
<th>Target GWP (Weighted Average GWP)</th>
<th>Target year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room A/C (Mini-Split)</td>
<td>750</td>
<td>2018</td>
</tr>
<tr>
<td>Commercial A/C (Split)</td>
<td>750</td>
<td>2020</td>
</tr>
<tr>
<td>Mobile A/C</td>
<td>150</td>
<td>2023</td>
</tr>
<tr>
<td>Condensing unit and refrigerating unit</td>
<td>1500</td>
<td>2025</td>
</tr>
<tr>
<td>Cold storage warehouses</td>
<td>100</td>
<td>2019</td>
</tr>
<tr>
<td>Urethane foam</td>
<td>100</td>
<td>2020</td>
</tr>
<tr>
<td>Dust blowers</td>
<td>10</td>
<td>2019</td>
</tr>
</tbody>
</table>
3. Regulations and Legislations in Japan

3) Regulation of refrigerant by "designated products"

Regulated by “Act on Rational Use and Proper Management of Fluorocarbons”

<table>
<thead>
<tr>
<th>Designated Products</th>
<th>Target GWP (Weighted Average GWP)</th>
<th>Target year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room A/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial A/C (Split)</td>
<td>750</td>
<td>2020</td>
</tr>
<tr>
<td>Mobile A/C</td>
<td>150</td>
<td>2023</td>
</tr>
<tr>
<td>Condensing unit and refrigerating unit</td>
<td>1500</td>
<td>2025</td>
</tr>
<tr>
<td>Cold storage warehouses</td>
<td>100</td>
<td>2019</td>
</tr>
<tr>
<td>Urethane foam</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Dust blowers</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- **Commercial A/C Large size (only single type)>> GWP: 750, 2023**
- **Centrifugal (Turbo) Refrigerators>> GWP: 100, 2025**

Next Target:
- VRF
- Commercial Refrigerators
- Refrigerants for Service
4. HFC Reduction in Japan

2012 HFC Production/Consumption (57.77M-CO2·t)
- RAC 31%
- PAC 9%
- VRF 20%
- Cond.Unit 14%
- Car Aircon 13%
- GHP 2%
- others 11%

2017年 HFC Production/Consumption (47.53M-CO2·t)
- RAC 16%
- PAC 6%
- VRF 26%
- Cond.Unit 21%
- Car Aircon 16%
- GHP 3%
- others 12%
5. Risk Assessment of A3 Refrigerant

1) Direction and Schedule

■ Direction
 • In the trend of deregulation of A3 refrigerants, JRAIA will propose air-conditioner be secured.
 • Based on RAC’s risk assessment method and results for A2L refrigerant, JRAIA also conducts risk assessment for A3 refrigerant and recommended measures to ensure safety from the evaluated result.

■ Schedule
 • First year; A3 refrigerant risk assessment
 • Second year; Estimation method and make plan for risk reduction
 • Last year; Making practical measures and verifying by risk assessment

<table>
<thead>
<tr>
<th>Risk assessment</th>
<th>Hazard estimation (NEDO Project)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/9</td>
<td>2017/9</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>Risk assessment</td>
</tr>
<tr>
<td>2018/9 /12</td>
<td>Risk reduction</td>
</tr>
<tr>
<td>Kobe Symposium</td>
<td>Measures verify</td>
</tr>
<tr>
<td>2019/9</td>
<td>JRAIA 1st report</td>
</tr>
</tbody>
</table>
5. Risk Assessment of A3 refrigerant

2) RA step for A3 refrigerant

<table>
<thead>
<tr>
<th>Step</th>
<th>Terms</th>
</tr>
</thead>
</table>
| 1: Evaluated product | • Setting of evaluated product and usage condition
• Making the risk scenario
• Manufacturing, Transportation, **Install, Use, repair, disposal** |
| 2: Risk assessment | ◎ Basic items of risk estimation
• Installation case (leaky space model setting)
• Refrigerant leak rate and leak speed
• Ignition source existence probability ← Identification the ignition source
• Flammable cloud ← CFD, simplified calculation |
| 3: Measures | • Equipment measures: Air circulation and ventilation fan, shutoff valve, alarm
• Document correspondence: Instruction manual, warning display
• Regulatory compliance: regulations, industrial association manual |
| 4: In market
(Regulation) | • Regulatory compliance: regulations, industrial association manual
• Document correspondence: Instruction manual, warning label
• Maintenance of work procedures manual
• Improvement of working accuracy in education and training |
6. Next-Generation Refrigerants
Development of Assessment Techniques for Next-Generation Refrigerant with Low GWP Values (NEDO’s Support)

Project summary

Device: Mid-to-small size Refrigeration & Air-Conditioning
Refrigerants: “next-generation” low-GWP refrigerant e.g) HC, HFO and HFO mixture

Objective:
- Establish the standard technique for the safety and risk assessment of low-GWP refrigerant and equipment
- Form the common basis for the development of equipment

Project term
2018 FY ~ 2022 FY (5 years)

Budget
2018FY 250 M-Yen (2 million USD)

R & D Contents

1. Data acquisition and evaluation for basic characteristic of next-generation refrigerants
 - Evaluation test for basic characteristic of next-generation refrigerants
 - Data acquisition and Assessment for test in practical environment

2. Development of Safety & Risk Assessment methods for next-generation refrigerants
 - Establish of Safety & Risk Assessment for flammability

Disseminate information (Internationally)

University Research Institute

opinion exchange

Industry
7. Energy Efficiency Improvement

1) Top Runner Program and Results

Overview of Top Runner Program

- **Reference Year**
- **Target Year (3-10yr later)**

<table>
<thead>
<tr>
<th>Product</th>
<th>TRP Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product A</td>
<td></td>
</tr>
<tr>
<td>Product B</td>
<td></td>
</tr>
<tr>
<td>Product C</td>
<td></td>
</tr>
<tr>
<td>Product D</td>
<td></td>
</tr>
</tbody>
</table>

- TRP Standard Value
 - More than 50%
 - Less than 50%

- Weight average (EE) should be more than standard value.

Trend of Periodical Power Consumption <Residential ACs>

- Periodical Power Consumption(kWh)
 - 1st Target
 - 2nd Target
 - 30.7% Reduction

32 items: 2017
Home appliances, Cars, Office appliances etc.

In case of Domestic ACs, Target values were set twice. (2004, 2010)
7. Energy Efficiency Improvement
2) Trend of Energy Efficiency and Price

Japan CPI for Room ACs (1990=100), APF and Number of units
8. JRAIA's efforts to accelerate introduction of lower GWP refrigerants

1) Collaboration to UNEP/UNIDO: PRAHA-II Project

2016: The HFC-32 study tour: provided participants with a background on designing and working with A2L refrigerants. Included plants visits, the risk assessment workshop, as well as attending the JRAIA International Symposium on “New Refrigerants and Environmental Technology”.- Tokyo, Shizuoka, Shiga, Kobe

2017: International Roundtable Meeting on Risk Assessment Model for use of lo-GWP Refrigerants in High Ambient Temperature Countries – Kuwait

2018: Special Expert Meeting: Risk Assessment Model for the Use of Lower-GWP Refrigerants in High Ambient Temperature Countries – Cairo

2019: Workshop to support Praha-II members for the development of risk assessment model for air-conditioning applications of A2L refrigerants at high ambient temperature countries - Tokyo
8. JRAIA's efforts to accelerate introduction of lower GWP refrigerants

2) ASEAN

2018: Workshop on risk assessment and safety measures for RACHP using flammable refrigerants (Workshop supported by NEDO) toward conversion to lower GWPs in ASEAN countries (Indonesia, Malaysia, Philippines, Thailand, Vietnam and Japan). Ozone officers and members of Industry Association discussed regulations, policies, and urgent challenges for refrigerant conversion and alternative refrigerants in each country. - Kobe, Japan

2019: Workshop on HFC phasedown for RACHP to meet Kigali Amendment in each countries) (Indonesia, Malaysia, Philippines, Thailand, Vietnam and Japan) TBD - Bangkok, Thailand
Summary

1. The global environment countermeasures (policy, product policy, etc.) in the refrigeration and air conditioning sector in Japan were clarified.

2. In considering future refrigerant conversion, it is necessary to consider the balance of various factors. In particular, verification of the safety of flammable refrigerants is very important.

3. Optimization is required for many parameters, including energy efficiency. (In terms of policy and products)

4. Regarding HFC reduction, not only individual product discussions but also efforts across the refrigeration and air conditioning sectors are required
HVAC&R 2020

Date: 3-6 March, 2020
Place: Makuhari Messe, Chiba, Japan

For further detail: https://www.jra.or.jp/hvacr/en/index.html
Thank you for your kind attention!!